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Correlation functions in classical solids
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By invoking thermodynamic potentials as generating functions for hierarchies of correlation functions, we
develop a description of solids written in the same statistical language used to describe inhomogeneous fluids.
Important constraints then follow from consideration of the symmetries of the crystalline solid. Considerable
insight into the two-particle density is obtained by appealing to the harmonic model of the solid, which
motivates the idea of parametrizing the correlation functions using parameters unique to each lattice site. By
paralleling the derivation of the Ornstein-Zernike equation we are led to an equivalent relation for the solid
between the parameters of the direct correlation function and the parameters of the two-particle density. By
similarly paralleling the derivation of Percus identity, we develop an equation for the parametrization of
correlation functions of a solid analogous to the hypernetted-chain equation of inhomogeneous fluids. The
harmonic model of the solid thus emerges from the appropriate limit of the hypernetted-chain equation for an
extremely inhomogeneous fluifi51063-651X97)02604-4

PACS numbsgs): 05.20-y, 61.20.Ne, 05.76-a, 63.10+a

I. INTRODUCTION fully to describe the structure of simple fluids. However,
similar though more complex relations also describe the cor-
The dynamics of three-dimensional crystalline solids argelation functions in, for example, the crystalline solid. No
traditionally described in terms of small amplitude vibrationsfeatures of the theory inherently prevent it from being used
of atoms from their equilibrium positions which, when quan-to describe an inhomogeneous “fluid” whose one-particle
tized, are the phonons. However, when the atoms makgensity is sharply peaked at a discrete set of sites; the limit of
|arger excursions from their equ”ibrium sites, for examp]e,extreme inhomogeneity is the classical solid but treated from
near melting, solid-solid phase transitions, and other exthe same point of view as classical density-functional theory.
tremely anharmonic phenomena, this description is inad- In this paper we investigate several properties of the two-
equate_ To address these prob|em5’ phonon-free theories, @g)jnt density and the direct correlation function of a classical
pecially density-functional theories, have been developegolid which follow from this picture. For simplicity, we re-
and have met with considerable success in describing, fogtrict our treatment to solids with a single atom associated
example, the melting of the hard-sphere sglid Density- With each site of a Bravais lattice. We begin by noting that
functional theories of solids require extremely inhomoge-Poth symmetry considerations and certain aspects of the har-
neous parametrizations of the one-particle density; the dednonic model of solids strongly suggest that the correlation
sity near a lattice site may be orders of magnitude highefunctions in a solid can be physically described by focusing
than the density in the interstitial regions. These theories als8n their properties in the vicinity of the lattice sites. We
require as input the Helmholtz free energy of the homogeadopt this point of view and with it propose a parametriza-
neous fluid state and information on correlation such as théon of the two-particle density and the direct correlation
Ornstein-Zernike function. In effect, the crystalline solid is function, the parameters themselves satisfying a discrete
viewed as an exceedingly inhomogeneous system, with shagfluation analogous to the Ornstein-Zernike equation. By
peaks in the one-particle density at a discrete set of sites. methods similar to the Percus identity, we also develop a
This representation of the solid system as an inhomogdllarametrized form of the closure relationship. Finally, we
neous system suggests an alternative treatment of the classhow that these results contain the harmonic model of the
cal solid. Inhomogeneous fluids are descritseatistically ~ solid in an appropriate limit.
normally in terms of correlation functions, for example, the
correlation functions which relate the one-point and two- Il. DEFINITIONS

point densities. These correlation functions can be given as . . .
the simultaneous solution of an integral equation, the The properties of a classical systemoparticles of mass

Ornstein-Zernike equation, and an algebraic closure relatiol " & three-dimensional volurié at coordinategr;} with

which relates the correlation functions to the pair potential.z(%nzf??{gﬁ d(lirT ;H"e’xl\?er'rr:;elrag:;nn%;a)p(?;r\gie d%(;tcer?gfés
Well-known approximations to the closure relation are the, thé Hamiltonian P
hypernetted-chain relation, the Percus-Yevick relation, an(§)y
the mean spherical approximati¢f]. In the homogeneous
case, the ensuing equations have been used quite success- HN:TN"_I a3 p(r)pd(r)
\

* . . . "
Presgnt addre;s. Dept. of Physics and Astronomy, Vanderbilt _,_%f dsrf d3r'p(2)(r,r’)qb(z)(r,r’), (1)
University, Nashville, TN 37235. Y Y
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whereTy=3 N ,p2/2m is the kinetic energy ST,
cV(r) =B~
N op (ry) 9)
p(r)=2, 8r=r) 2
) 82 Fex
is the (one-particleé density operator, and Sp'(ry) 8p'H(ry)
N N ) ) ) ) )
’3(2)(”,):2 2 S(r—r)8(r' 1)) 3) We (_empha5|ze that these_hlerarchl_es arise from s_lmply re-
i=1j=1 garding the thermodynamic potentials as generating func-

+*

tions for correlation and distribution functions; we distin-

is the two-particle density operator. Interactions of three o@uish these hierarchies from the Bogoliubov-Born-Green-
more particles that cannot be decomposed into pair potential§irkwood-Yvon hierarchy, which has also been used to
will be ignored. The evident translational symmetry of Eq.describe distribution functions in solidéSee[7,8], and ref-
(1) can be broken by the imposition of an arbitrarily weak erences thereinBecause
external potential. We focus our attention on systems and the
choice of thermodynamic conditions for whi¢h(r)) is pe- 1 6Fy s 1)
riodic, and with the symmetry of a Bravais lattit®o essen- B 500 IN[A3pM ()], (10
tial physics is lost by this restrictionThe grand potential)
associated with this Hamiltonian is then a generating func-
tion for a hierarchy of multipoint densities of the system it follows that
[3.,4], as follows:
1

PTEN) 6
1 4(BQ) ~ p<1)(r): —e B (r)+cH(r) (11)
—EW=<p(r)>=p<“(r), (4) A
1 82(BQ) If the particles are noninteracting,, vanishes, and all of its
- =3 1D o =(p(0)p(r"))—(p(r)p(r')) functional derivatives including'”(r) vanish. In this cir-
B= 8¢ (r)o¢ (1) cumstance, Eq.11) becomes the familiar “barometer” for-
= 0@(r,r)+8(r—r")pd(r) mula, 'the Boltzmann digtribution of noninterf_alcting particles
at a given temperature in an external potential. Here we see
—pB(r)pD(r). (5)  thatc'Y(r) plays the role of an effective external potential

" arising from the interactions of the particles. In the case of
The above correspondence betwgﬁil?(r) and p(r) sug-  solids,c™(r) plays an important role in stabilizing the solid
gests that they are thermodynamically conjugate variablesven in an arbitrarily small external field, thus breaking the

relating two potentials via a Legendre transformation. symmetry of the Hamiltonian. The role cfz)(r,r’) will be
In fact, if we define the “intrinsic” Helmholtz free energy elucidated in the next section.
by Because of the conjugacy ef"(r) andp®(r), their func-

tional derivatives are “matrix” inverses of each other, i.e.,
Fp M=)~ f &’ pU(N[ (1) —u]  (6)
8¢ P(ry) op™M(rs)
spM(rg) 8¢M(ry)
_ J & 8F 5°Q)
SF $ 5pM(ry) pM(ry) 8¢ (r3) 8™ (ry)

D= ——
¢ (r) 5p(1)(r) : (7 (12)

rl—r2)=J d3rg

S
then sinceF is a unique functional of the one-particle density (
[5.6]

The intrinsic Helmholtz free energy can be separated into an_ . _ ) ) _
ideal partF,, (which is the Helmholtz free energy of a non- This equation is equivalent to the Ornstein-Zernike equation.

interacting system at the same temperature and with an iden-

tical one-particle densi)y and an excess parke, which . SYMMETRY CONSIDERATIONS
arises from the interactions of the particles in the system.
Since In a homogeneous, isotropic liquid, correlation functions

simplify markedly. Because homogeneity implies a continu-
ous translational symmetry, functions of one position satisfy
ﬁ}_id:f d*r pM(D{ININ3pP ()] -1}, ® s D(r+r)=p®(r), for all r', and hence are constant. By the
same symmetry, functions of two positions satisfy
where\?=gh?/2mm is the thermal de Broglie wavelength, p@(r,r")=p?(r+r"r'+r"), for all r”, and choosing
the excess part is then a generating function for a second’=—r’, for all r we see that two-point functions are func-
hierarchy of correlation functions, namely, the direct corre-tions only of the difference between the two variables. Fur-

lation functions: thermore, if the liquid is isotropi¢rotationally and transla-
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tionally invarian}, only the magnitude of the difference variable. It can therefore be written in a Fourier series in the
matters, angh®(r,,r,)=p?(r;—r,|). Thus a function of six center of mass variable, with coefficients that are functions
variables has been reduced to a function of one variable. of the difference, i.e.,

In an inhomogeneous system, a function of six variables
can be reduced to a function of one variable by averaging the

' > , 2) _ iG-(r1+1)/2, (2 _
function of two positions over all translations and then aver- Pl (rl,rz)—% el 2o (ry—ry). (18)
aging the resulting function of one vectoover rotationd?,
€G- The coefficients satisfp{2)(r)=p®4(r) since the two-

dQ [ &% p@(r+r* ) point density is real, and they also satisfy{Z)(r)
g(r)=J v f v P . 13 =pg)(—r) because the two-point density is symmetric with
S

respect to interchange of variables. By definition of a recip-

. ) . ; iG-Ry_ iG.(Ry—Ry)/2
In the homogeneous limit, this function reduces to the fam"_roc%(Igttl%e)/;/ector,e ?=1, and thereforee™ ™ 72
iar radial distribution function, and retains much of its struc-—€ _ * 2 - Itfollows that any two-point function, when
ture even in inhomogeneous systems. Indeed, Rastah evaluated at two lattice sites, is a function only of tifer-
[9] have exploited this similarity in order to develop a theory ENcebetween the two lattice sites. This property holds only
of correlations in the solid based on this function. HoweverOr lattice sites and not, of course, for arbitrary points. Fur-
it does not satisfy any known equations corresponding to théermore, if the Fourier series E(18) is differentiable with
Ornstein-Zernike and hypernetted-chain equations. WEESPECt {03 andr,, the same arguments continue to apply to
therefore focus instead on the two-particle density itself ints derivatives, which will also be functions of the difference

order to develop a theory of solids analogous to statisticaP€tween two lattice pointgin carrying out the differentia-
theories of inhomogeneous fluids. tion, it is essential to differentiate first, and only then to

In crystalline solids, the continuous translational Syrnme_evaluate the result at lattice siteErom these properties we

try is broken:; the system is invariant only under a discrete set€duce that if a two-point function can be written as a Fou-
of transformations. We emphasize that the crystals discussdl! Series that is infinitely differentiable, it can be repre-
here are dynamic, and that the symmetries refer to the proprented as a Taylor expansion about each lattice site, and the
erties of thermodynamic averages, not the instantaneous pgoefficients of the Taylor expansion will be functions only of
sitions of the particles. The first step toward understandindh® difference between the lattice sites. Although the two-
the structure of correlation functions in solids is thus to dePeint correlation functions of a crystalline solid are consid-
termine the constraints that this broken symmetry place§"aPly more complicated than those of an isotropic, homoge-
upon them. The meaning of translational symmetry for &€0US fluid, they are nevertheless much simpler than those of
crystalline solid is that there exists a discrete set of vector&n arbitrary inhomogeneous fluid.

R; such that any function of position, such as one-particle

densityp™(r), satisfies IV. HARMONIC APPROXIMATION

p V(N =pP(r+R) for all R;. (14) A great deal can be learned about the multipoint densities
of a solid by studying the harmonic approximation to atomic

This set of vectors necessarily forms a Bravais lattice and thdynamics. In this approximation, we break the continuous
consequent periodic structure implies that one-point funciranslational symmetry of the basic Hamiltonian &) by

tions can be expanded as a Fourier sefri€} tying each particle to a particular equilibrium site. For con-
venience, we will continue to assume that the equilibrium

" or sites form a Bravais lattice, although much of the analysis
p (=2 pee'®”, (15  applies in more general situations, such as a Bravais lattice
¢ with a basis, or even in the absence of any translational sym-
metry (such as a nondiffusive glassy sysiemihe relevant
dynamical variables are no longer the positions of the par-
ticlesr; but their displacemenig(i) =r;—R; from a fixed set
1 of lattice sites{R,}. In this section we shall show that the
pe=— f d3r e G TpM(r). (16) one- and two-point densities describing the harmonic solid
vJc have simple functional forms that provide insight into the
) ] ] behavior of these functions in more general situations. Fur-
TigeRG are reciprocal lattice vectors with the property thathermore, the relationship of these functions to correlation
e~ Ti=1 for all G and all R;. Two-point functions in & fynctions of displacement will provide a connection between
crystal are, not doubly periodic. Any two-paint function, for gjstribution function and phonon-based views of the solid.
examplep?, satisfies the single periodicity requirement  The Hamiltonian of the harmonic solid is assumed to contain
a potential energy that is a general quadratic function of the
displacement§10]. To within constant terms, the Hamil-

. . . tonian takes the well-known form
If we write Eq. (17) in terms of a center of mass variable
r+=(r1+r(2)/2 and a difference variable_=r,—r, then we
see thatp 2>(r+ ,f_) is a periodic function of the center of 7}:'}4.% 2 u(i)-B(i,j)-u(j). (19
mass variable, and a continuous function of the difference Ri\R;

where the Fourier series coefficienig are defined in terms
of an integral over the volume of a primitive cellC,

pP(ri,r)=p?(r;+R;,r,+R;) for all R;. (17
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In Eq. (19) the matrix of rank-2 tensorg(Dj), the dynami- functions involving components of displacements from the
cal matrix, can be written in terms of the second derivativesame site are needed; more generally, correlation functions

tensor of the pair potentials in the Hamiltonian Ed). between displacements at pairs of sites are needed. Thus
D) == P (R RD it 6,2 6P (R R p Uk =3, elkRig-(Wak-(iuink (24
Ry Ri
(20 |

and at this point the average can be reinterpreted under clas-

where sical conditions. Note that the displacement-displacement au-
P (r) tocorrelation functiofu(i)u(i)) is a second rank tensor, but
¢><2>(r),”=— (21)  for a crystal of cubic symmetry, it is simply proportional to

I o, ., The correlation functions between displacements at dif-

. : ferent sites will generally not be proportional &),, except
n r rtesian compon hat neither the . .9 v
(w and v are Cartesian componeptlote that neither the n the approximation that all three branches of the phonon

first derivatives of nor even the actual values of the paiﬂd. . lationshi d . Th displ i
potential enter the harmonic Hamiltonid@9). (The latter ISpersion refationship are degenerate. These displacement-

enter into a constant that is physically irrelevant in the har_?r:spgcsment corre_lat?n funct:jons are all ?agny computetd 'B
monic model; the first derivatives vanish because the Hamil: € Debye approximation, and, as expected are seen 1o be

tonian is expanded about sites which by definition constitut unctions only of the difference b_etween the Iattl_ce sites.
the equilibrium configuration of the particlgs. ow the Fourier transform can be inverted to obtain
In order to calculate the one-particle density, it is more ~
convenient to work in terms of its Fourier transform: pV(r)=(2m)~ (32| |12 @~ (M2 —R)-a-(r=Ry)
R.

| (25)

. AN : )
displacement-displacement correlation tensor. It is worth

It is also convenient to begin with a quantum mechanicaf©ting that not only is the one-point density of tharmonic
description and then to proceed to the classical limit. In the>0lid rigorously a sum of Gaussians, but in particular the
harmonic model, if operator andB are linear functions of ©N€-point density of the hard-sphere solid, the nashar-
displacement and momentum, or if the corresponding quaronic solid imaginable, is also representative of a sum of

tum mechanical operators are linear functions of creation anffaussians, as gauged in simulational studies of the moments

annihilation operators, then expectation values of exponerf displacement12]. , _
tials satisfy[11] Paralleling the above analysis, the Fourier transform of

the two-point density

p(k)=f d3r eik‘rp(r)=; e Rigelkuily (220 whereS,« (u(i),u(i)=46, is the matrix inverse of the

(eAeé‘> — (U2 (A?+2AB+B?) (23)

(2) _ ik1-Riniko Ri/ aiky u(i)aiky-u(j)
which enables us to write any expectation value necessary p (ke k) ;i RjzRi € emi(e € )
for the calculation of any multipoint density entirely in terms (26)
of  displacement-displacement  correlation  functions
(U(Rj)u(R;)). For the one-point density, only the correlation can be written

p<2><k1,k2>=§ RgR ek Rigka Ry exp{— 3Ky (u(i)u(i))-ky+ 2Ky - (u(i)u(j)) - Ko+ Ko (u(u()) kot (27)
i j i

This Fourier transform can also be inverted analytically, the result involving the inversexad anatrix. However, by writing
the term in the final exponential as &6 matrix but partitioned into 83 blocks, i.e.,

(u(iu(i) <u<i>u(1>>) (tl) 28
2

(uu()y (uGui)y)

the final result for two-point density will also involve only<3 matrices. The form for the two-point density is therefore also
a Gaussian to be associated with every pair of lattice sites, namely,

[k1~<u(i)u(i))-k1+2k1-<u(i)u(j))-k2+k2~(u(j)u(j)>-k2]=(k1k2)~(

|af 1 ¢ d| [n-R
(2) = —12 ——(r{—Rir-—R;)- . :
P = e 2 2 I =5 (R R)-| g gy (29
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where

n=1—(u(i)u(i))~Hu()u())ui)ui))~u(iu(j)),
(30)

c=n"Xu(iu(i)) (3D
and
d=n""(u(i)u(i)) " Xu()u)Xu(iui) =t (32

are functions only of the difference between lattice sibs.
the more general case where the equilibrium dReslo not
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This analysis ceases to apply when both arguments are
evaluated in the vicinity of the same site. Becap'$¥r, r,)
is proportional to the joint probability density of finding dif-
ferent particles at, andr,, no Gaussian can be associated
with pairs of sites Rj=R;. The only contribution to
p?(R;+r4, R, +r,) is from the tails of the surrounding Gaus-
sians. Accordinglyh will be small(but nonzergin this case,
and will certainly have an analytic expansion about the ori-
gin. However, the familiar low-density approximatidrgr
—r1,)~e B4?11-r2_ 1 generally requireh to have an es-
sential singularity about the ling=r, because the pair po-
tential is normally infinite there(Note thath is continuous

form a Bravais lattice, the one- and two-point densities camnd infinitely differentiable through this singularity; how-
also be expressed as Gaussians, but the symmetry propertiser, all derivatives oh vanish along this line and cannot
of the lattice cannot be exploited further in simplifying the pe reconstructed at other points in space from its Taylor ex-

expressions.

pansion about the origihThe reason that the harmonic ap-

Continuing within this approximation, the total correla- proximation predicts analytic behavior at small separations is
tion function evaluated in the neighborhoods of two distinctthat this approximation does not account for the “hard-core”
lattice sites then follows from the fundamental definition, repulsions of typical pair potentials, which for typical sys-

i.e.,

pP(Ri+ry,Rj+ry)
pP(Ri+1)pP(Rj+13) ™

h(Ri+r1,Rj+I’2)=

tems cannot be reconstructed from only the second deriva-
tive information contained in Eq20).

It should be noted that in the displacement-displacement
correlation function calculated in the Debye approximation,

(33)  the value of
and can be Taylor expanded about those sites, p (11,1 = pD(r)pM(ry)=pP(r) p®(r)h(ry,ry)
h(Ri+rq,Rj+ry)=h+ry-h™ry+r;-ht2r, (38)
+ryh2ryt e (34) evaluated at pairs of lattice point(R;,R;) decays as

|Ri—Rj|‘2 for large separation. However, because the coef-
The first derivative terms vanish; the coefficients are funcficient h** decays agR;—R;|™*, we have|h'4>|h°| for
tions only of the difference between lattice sites because thigrge — separation, and the maximum value of
displacement-displacement correlation functions are alsa?™(r)p”(rh(ry.r,) occurs slightlyawayfrom pairs of lat-
Assuming nonoverlapping Gaussians, an@li{fi)u(i)) is as-  tice sites. Furthermore, this maximum value decays as
sumed to be diagonal, then the remaining coefficients havkR;—R;|™*, in accord with the expected asymptotic behavior

convenient  Taylor expansions in terms of [13]. This observation further motivates our concentration on
B, =2\u(i) ,u(j))u(i),u(j),), namely, thg Ornste!n—Zernike equation as written in terms of the two-
point density
2 4 6
ho=2 18+ & (TrB)?+ . (TrB)3+ - (35 2) 1) 1) 1 1) (2
2 8 48 ' po(ry,ra)=p 2 (ry)p = (ra) —p' = (ry) p' ) (ra) et (ry,ra)
hil=p22= — a_g B+ (36) = f dra[p@(ry,r3)—pM(ry)p™M(rs)]
2 1
X[pW(r3)p(r)c?(rg,rp)], (39
ht?=a?(uiu(j))+--- , (37

rather than in the usual form in terms lof

V. THE ORNSTEIN-ZERNIKE EQUATION

These expressions are Taylor expanded in this particular FOR A CRYSTAL

form because we typically expelu(i)u(j))|<|Ku(i)u(i))|

for i #j where||-| is any well-behaved linear norm for rank-2 ~ Our intent in this section is to examine approximations to
tensors, for example, the trace of the tensor. In fact, in thehe crystalline two-point functions which, via physically mo-
Debye approximatiotiu(i)u(j))|| decays with separation as tivated parametrizations, will lead to a sitewise equivalent of
|Ri—Rj|‘1. Utilizing the same approximation with all three the Ornstein-Zernike equation. The harmonic solid has a
branches of the phonon dispersion relationship degenerate \itell-known statistical property: because its Hamiltonian is a
is necessarily positive definite. Thus we can see that if onlyjuadratic form, its partition function is the integral of a
one particle is displaced from its site(R;+u(i), R;+u(j)) Gaussian and can be written down analytically. If the har-
decreases with displacement. But if both particles are simulmonic solid is now placed in a weak external potential, we

taneously displaced in directions with(i)-u(j)>0, h in-
creases with displacement. It follows thhatis locally a

can take advantage of the fact that the particles are already
well localized around lattice sites to Taylor expand the ex-

saddle about pairs of distinct sites in six-dimensional spacegernal potential around the same sites. If we retain terms as
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high as quadratic, we can still obtain an analytic form for the The Helmholtz free energy, which in general idumc-
partition function. Including the external potential, we cantional of the external potential, is herefanctionof the Tay-
write the Hamiltonian lor series coefficients of the external potentieffectively,
the external potential has been parametrized by its Taylor
R - series coefficienjs Since we are performing a separate Tay-
H=T+3% >, u(i)-D'(i,j)-u(j)+> (R lor expansion of the external potential about each site, a set
RiRj Ri of parameters is thereby uniquely associated with each site.
In order to develop a method of parametrizing distribution
+> Vo D(R) - u(i)+0((i)®)+0(u(i)?, functions more systematically, we now explore a somewhat
Ri more general system. Consider a Hamiltortdpfor a sys-
(40 tem of N* particles in a volumev*, which is symmetry
broken so that the relevant dynamical variables are the dis-
o e placementsu(i); otherwise it is arbitrary. We focus on a
where D("J):D.(' ’J)+(1/.2?[a2¢(1)(Ri)/axuﬁxv] sgb- subsystem of volum¥ <V* (but still macroscopicembed-
sumes the quadratic term arising from external potential. Th@qq in the larger system. The volure will be subdivided
expansion in powers of displacement must be terminated g&to N* cells, identified as the Wigner-Seitz cells of equilib-
an even order in order to be bounded below. The canonicajym positions of theN* particles. To the basic Hamiltonian
partition function is then we add an external potential, regarded as a perturbation term,
but defined only within the subvolumé; thus

—y\ —3NR-3N | 43N—6f,naBH S
Z=\""h fd {uje H=Tlu) p)1+ 3 5 0,(1) 4"

=(277)(3’2)N)\_3N|,85’|‘(1/2)e_ﬁ¢(1)(Ri) i j
X (Ri+(Rj—Ry)+u(j)), (44)

B o
Xex’](E’szq. VoY(R)-CC(i,j)- Vo (R)) where©;(r) is unity if r is in the Wigner-Seitz cell of site
v R;, and zero otherwise, and abbreviated here by
(4D 6i(j)=06;(R;+u(j)). The sums over cells are taken to be
only over those cells comprising the volume of the sub-
where Cis the matrix inverse to D defined implicitly by system. We have written the external potential in this form in
order to emphasize that we wish to Taylor expand the con-
. . tribution of particlei to the potential energy about the site to
2 C(i1i) o D(jK) jp = SikSpun - (42)  which it is nearest and not the site of its equilibrium posi-
i tion.
Now, any physical quantity which is local to a region
The integrations are over all displacement degrees of freewithin V and determined from a thermal average over a
dom except the three corresponding to an overall translatiogrand canonical ensemble of configurations/ofan just as
of the crystal and the three corresponding to an overall rotawell be calculated as a thermal average over a canonical
tion. The set of displacements spanning the six degrees éMmsemble of configurations af*. Since partial derivatives
freedom not integrated out are the null space of the dynamiof thermodynamic potentials “pull down” quantities from
cal matrix because there is no restoring force opposing thedf€ Boltzmann factor in the partition function and compute
collective motions. Hence the determinant of the dynamicafn€ir thermal averages, it follows that there is a correspon-
matrix in the result must be interpreted as the product of thd€nce between partial derivatives of the grand potef¥iaf
eigenvalues whose eigenvectors span  ti@8N—6)- the subsystem iV and the partial derivatives of the Helm-

. ;
dimensional space that is the domain of integration. The re\t/]glrgéb];reeaignnreggyeg{ tt:(\e/vr?iﬁtivrg g?fférgﬁi\g?ee?s E?sae}lftlr:)ial
maining six eigenvalues are zero. No factor diflAppears P

. . . . X in V. If we therefore Taylor expand the external potential in
as IS usqal In a system of identical particles bepause stat%cq_ (45) about the equilibrium siteR;, then partial deriva-
with particles interchanged are not overcounted in the partiges of the grand potential with respect to the Taylor coef-
tion function. Because the Hamiltonian is written in terms Officients of the external potential result in functionais of den-

displacements of particles tied to particular sites, the statgjty which have exact representations as integrals, for

with two particles exchangeffor instance,u(i)=R;~R,,  example,
u(j)=R,—R;] has much higher energy than the identical
state with particles in their “proper” location and thus con- Q.
tributes negligibly to the partition function. Neglecting irrel- 6OR) 2 <6i(j)>=j d3r ©;(r)pM(r),
evant constants, the Helmholtz free energy is then ¢ (Ri) pa’ﬁ'c'es (45)

1 - N > (6i(HR—Ri+u(j

FZ%'MBD,)\ZH'; #(R;) §¢(1)(Ri)ﬂ_par§icles< A ] ! U(J)M»
i i
1 -
*5 2 VIR CliL)- VIR +- =J d*r 6;(N(r=Ry),p™M(r).
i

(43
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This suggests a clear correspondeftdeoetween parameters the list of Cartesian coordinates. The choice of a parametri-
of external potential and parameters of a density operator, asation in which these second and higher functional deriva-
follows: tives actually vanish is now important, because in turn it
causes the second term on the right-hand side of4R).to
A . vanish; the secon¢and higher functional derivatives of the
(R. = . ’ . . . . .
¢ (Ri)=p(Ri) pa%clese'(”' thermodynamic potentials have expressions in terms of their
j parameters similar to the expression for the first derivative.
This parametrization has an important orthonormality prop-
-~ S erty, namely,
$D(R), PR, = > Oi(r(ij),, 4 Y Y

particles

i opp o
fol?’r3 5 = e (51)

W(ra) 66 (rs)
(R SR = GOV (i
PR ey PR oy pa%cbse'mr(” Jur =1 (1), which can be proven by noting that E&1) written in terms

] of the Cartesian componemtsy, andz of r—R, is

wherer (ij) =R;—R;+u(j). The set of Taylor coefficients of
the external potential about each site is now taken as suffi-| dx dy dzO(x,y,z) 8™ (x)x™&™)(y)y"vs'™(z)z",
cient to describe any reasonably smooth external potential; it (52)
is conjugate to the moments of one-particle density about
each sitg\with integration restricted to the Wigner-Seitz cell wherem,, m,, andm, are the number of occurrencesxf
of the sitg which is a set of variables sufficient to describey, andz, respectively, in the subscripts preceding the deriva-
any reasonably smooth one-particle density. tive, n,, ny, andn, are the number of occurrences xfy,

In the limit that we parametrize all possible variations andz, respectively, in the subscripts of the position vectors,
completely, we can use the chain rule to write expressionand&™(x) denotes thenth derivative of thes function. The
involving functional derivatives in terms of corresponding X integration vanishes if,>m, because it is the evaluation

expressions involvingartial derivatives, for example, of a power ofx at the origin; it vanishes i,>n, because
the m,th derivative ofx"x is zero; if m=n,, then thex
o0 _s 9 S¢q integration ism,!. The factor© is irrelevant because the
56 I(r) 4 dd, 66I(r)’ (47 origin always lies within the Wigner-Seitz cell; the orthogo-
nality is established because tlyeand z integrations are
2 identical and the normalization is established because
5°Q
EYEPREIEY s=m,!my!m,!. Since any parameter of density is a func-
¢ (r) 647 (ro) tional of one-particle density with an integral expression, for
2 E 520 5. Sy example,
DT 9haddy 56N (r1) ¢M(ry) sp'V
, ps= f d* —5— p (1), (53
S a0 5 dq 48 op' (1)
2 0ha 0¢'V(r1) 64 (ra)’ we can multiply on both sides byg,/64Y(r"), integrate
with respect ta’, and sum orb to obtain an expression for
[Here we use,b,c, ... tolabel parameters that are properly gensity:
described by a sit®; and a list of(possibly zerp Cartesian
indices] A similar formula holds for variations with respect sV
(1) . . . . (1) — 2 (1) a (54)
to p”(r). The functional derivatives of parameters with re- p(r) a Pa IR
spect tog'Y can be evaluated by
i The result is that for the crystalline solid we have param-
8¢ (Ri) v Ip -9y S(r—R) etrized the one-point density in terms &functions and their
5™M(r) s v derivatives. This is a sensible approximation because the
(49 one-point density of a solid is known to be sharply peaked
52(25(1)(“)#---” about equilibrium sites, and thermodynamic quantities calcu-
=0, lated as integrals over the one-point density can now be ex-
56D eI (1’ g p y can .
¢ o) pressed as sums over the parameters of density. Since the
5p(R)) parameters of external potential were obtained simply by
% =(r-R), - (r-R),0(r—R)), Taylor expanding it about each lattice site, Taylor’s theorem
op'(r) # (50 itself now provides the reconstruction of the external poten-
tial in terms of its parameters.
o)y More generally, suppose that the dengit(r) and exter-
spV(r)yspP(ry nal potential¢(r) are parametrized in such a way that
wheres is_ a symmetry factor accounting for the prodl_Jct of p(1>(r):2 03 —R(a)A%r—Ri(a)pa, (55
the factorials of the number of occurrencesxpl/, andz in a
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L the Helmholtz free energy of an ensemble of noninteracting
d V(=2 03 —Ri(a)P(r—Ri(@)da, (56) particles with the same one-point density. Next, we define
é the analog of the direct correlation function by
whereP?(r) is a polynomial in the vector components rof BPF

©2(r) is one or zero according to whetheris or is not in - m
some bounded region associated with the paranztand piRi/a?Pie

= C(2)( Ri 1Rk)ac+ f( Ri)acéRi Ry

R,(a) is an equilibrium site in or near that region. Further- (60
more A%(r)=P2dlar)&r). In Eqg. (56) the sum runs over a where

set of polynomialsP? whose corresponding parameters are 2T

orthonormal in the sense of E(h1). Substituting in Eq(48) f(R) = — _ BITFa (61)
into the inverse relation of the functional derivative hierar- Ip(Ri)adp(Ri)c

chy Eq.(12), we can write depends only on the density about one site since interparticle

2F 320 interactions are irrelevant in the ideal gas term. From Eq.
S(ri—r)=2 > > > Jd3r3 (11), the equivalent noninteracting system may be inter-
a b c d Ipadpy Ibcdbq preted as a system of noninteracting oscillators with poten-
5pa 5o 56, Y tials [3’1_0_“)(0. Because they are noninteracting, the canoni-
X~ o 0 o) ) cal partition functlon _fpr the en_semble is slmply the propluct
6p'7(ry) 8p~(rg) 6¢(rg) 647 (rp) of the canonical partition functions of the individual oscilla-

(57) tors. Hence th€nonintrinsig Helmholtz free energy of the
equivalent ideal gas is
Using the orthonormality property, E€G1), we can multiply
Eq. (57) by 5¢a’/5¢(1)(r1) and 5Pd’/5P(l)(r2) and integrate — BF4=In )CSNH f d3u(i)efc<l)(Ri+u(i)) (62)
overr, andr, to obtain ' R '

PF 320 where (1/8)c™(R;+u(i)) is the effective external potential
Sad= 2 padpe dbedby (58)  that causes the ideal gas to assume the one-point density of
¢ affc T the solid. We assume that te€”’ can be parametrized in the

after dropping primes on the subscripts. Consequently, th&&Me manner as the one-particle density by

parametersp, and p, of the thermodynamically conjugate

fields #™V(r) and pY(r) are themselves thermodynamically cDR;+u(i))=2, c(i)apliu(i)),. (63)
conjugate variables. We have therefore established that Eq. a

(58) is analogous to the inversion equation in the functionalrpen p(R).=— Bldlac(i)]Fy, and since the intrinsic

greatly simplify the analysis of the Ornstein-Zernike and

hypernetted-chain equations for the crystalline solid. Previ-

oﬁg analyses in tern?s of Fourier compZnents and expansion 'Bfidzf & p(N{IN[Ap(r)]-1}

in powers of density{7] have indicated that solutions of

these equations corresponding to solids exist, but otherwise = BF, +E p(R)C(i) (64)
have not illuminated the asymptotic properties of the corre- t g PR e an

lation functions, or their special relation to the harmonic

model. we have

*BF; . . .
VI. THE DIRECT CORRELATION FUNCTION > m [{(p(R)cp(R)p) = (p(R)){P(R)p)]
FOR A CRYSTAL ¢ oPiRiaftRie

In this section we further develop the analogy between the = ab- (65

hierarchy inversion relationships E(8) and Eq.(12). The If the density profiles about neighboring sites can be re-

Ornstein-Zernike equation is equivalent to EtR). Here we  garded as nonoverlapping, the sitewise analog of the two-
introduce a parametrized direct correlation function whichpoint density is simply

allows us to rewrite Eq(58) in a form more nearly resem- . .

bling the Ornstein-Zernike equation. We start from the hier- PP (R ,R})ap=(P(R)ap(R))p)(1— SrR,)-  (66)
archy inversion relationship E458) rewritten to emphasize , _ .

that each parameter is associated with a unique lattice sitd '€ Usefulness of this definition depends crucially on the

namely, nonoyerlapping a_pproximati_on, for it ensures thqt particles
associated with different lattice sites are, in fact, distinct par-
E PPF 9%F ticles. Then
=08R R Oab-
Re 9p(R)adp(R)e dp(RIIP(R) 772 1 opF
(59) = p (R} ,R))ap— p(R)ap(R))p

B2 9p(R)IB(R),
We again separate the intrinsic Helmholtz free energy into 5 R
ideal and excess part$,=F,q+ Fox, Where the ideal part is + Riij( iash (67)
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e (h(R)ap(Ry ) = (PRI (R
A A . p)=
P(Ri)asb=(P(R)aP(Ri)p) (68) e Tre™ A
is the parameter of density formed by combining two param- Trﬁ(Ri)aZ)(Rj)be‘ﬁﬁ Trf)(Rj)be‘ﬁff
eters of density multiplicatively. Further, = - mp Y
Trp(Rj)pe Tre A
2 (R Rad P (R, Ryen = p(RI)cp(R) o] _ Tip(R)ap(R)pe ¥ GRYY. (73
k,c - - i .
Trp(Ry)oe ¥ .
+2 F(R)ad p®(Ri R b= p(Ri)cp(R))p] )
¢ We can easily identify the second factor @&R;)p). How-
ever, when we attempt to identify the first factor, as
2 ¢ (RiR))ach(Ri)eon
. Trp(Ri)ae "
R)y)=—"— 74
+ 5RiRj§ f(Ri)acP(Rj)cab (p(Ri)a) Tre A" 749
= 5RiRj Sab- (69)

for some effective Hamiltoniat* two problems are imme-
diately encountered. The first is minor: the expressions for
the density operators, E6), in terms of the displacements
(the actual dynamical variables of the Hamiltoniame not
invertible. However, if the particles in the solid are well lo-

Because of Eq(65), the § function terms cancel, so that we
finally arrive at

@(R (2 - _ calized about their lattice sites, we may assume that the
c“(R;,R R¢,R R R J
REK;C (Ri-Rac ™ (Ric:RiJenr= p(R)p(R) o] dominant term in each of the sums in Eg6) is thei=]|
term, and continue paralleling the derivation of the Percus
+> f(R)ad p(R; R eb—P(R)eP(R))b] identity by writing the effective Hamiltonian as
[
+3 ¢?(R R))ach(Ry)ecp=0. (70) S BTG (79)
[

This result is the sought-for sitewise analog of the Ornsteinyye define the effective Hamiltonian with a proportionality
Zernike equation, and is one of our primary results for thepecause multiplication by an overall constant is equivalent to

crystal. adding an overall constant t*, which is physically irrel-
evant. However, because the density parameter is a dimen-
VIl. THE PERCUS IDENTITY FOR MOMENTS sional quantity(typically a power of length we divide by,

. . . . . for example, an appropriate power ®fin order to ensure
In this section we will develop an identity analogous to A pprop P

the so-called “Percus trick’[14], but one that can be used thate F" is dimensionless. , , ,

for moments of one- and two-point density. In other words, 1€ second and more serious problem is that since the
if p(R)), and f)(Rj)b (i#]) are parameters of the density integration runs_through all p055|ble_ valuesp_iR]-)b, for
operator(say vector components of particle displacementsSOMe configurations of the other particles the integral can be

from different sites in alN-particle system, we wish to write negative. We cannot simply take the absolute value of the
integral, because this integral, a function of all other dis-

(ﬁ(Ri)af)(Rj)b):(ﬁ(Ri)a>*<f>(Rj)b>, (72 placem_ents, is itsehf integrated over, and some configurations
are weighted negatively in the outer averaging. Evidently the

where the star indicates that the average is to be carried ophysical constraint that density be non-negative has a site-
in an (N— 1)-particle ensemble obtained by removing a par-wise analog: density must be parametrized in such a way that
ticular particle from our originaN-particle ensemble, and its parameters are non-negative.
possibly with different interactions. This cannot be achieved One solution is therefore to divide thgarameterof the
in general. We attempt to parallel the derivation of the Perdensity operator into separate positive and negative parts:
cus identity and for convenience, we define a trace over dis-

tinguishable particles by i >0 0

[P it (0 if p=0
P =lo if p<or P T||p| if p<o- (79

TrEh*?’Nf d3u(1)~~d3u(N)f d®py---dpy. (72

Then, identifying the site to be pinned as sifRy,
Now we proceed as before, but with tdgfunctions of the we can easily write (p(R;).p(Ro)p)={p(R)P(Ro)p )
continuous form of the density operator replaced by density-(p(R;).p(Rg)p ), and then develop separate effective
operator parameters: Hamiltonians for each term. Thus
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(B(R)aP(RO=(p(R) M pP(R)) (77) x* must sgpiarately match the number Qf occurrencegof
Becausex" x~ =0, the symmetry factos is the same as be-
where fore.
. The proposed division into positive and negative parts is
R Trf)(Ri)ae‘Bw not required in the traditional development of the Percus
(P(R)a) " =————— (78 identity because the densities are defined as expectation val-

Tre AH" : :
ues of § functions, and the fact that functions(and many

approximations to thejmare strictly non-negative ensures
that the resulting density is always non-negative. When the
.. . density is parametrized in terms mfomentsabout the sites,
e AH OCJ d3u(0)p(Ry)s e A", (790  the physical requirement that the density be non-negative
must be extended here to require that the density be param-
trized in terms of non-negative quantiti€k fact, in the
ontinuum case the density can be thought of as param-

and

with corresponding averages over the negative part definin

a similar effective Hamiltoniari{~ for the negative part. . . . . ) . X
_ gt q e rictl " etrized in terms of its value at spatial locations. Since density
Observe thae ande aré strictly non-negative. jise|f s physically required to be non-negative, it is auto-

It is important to note that when the Cartesian tensor paaiically parametrized in terms of non-negative quantities.

rameters of the density operator presented in Sec. Il C arg gimjjar problem can arise in some formulations of density-
split into positive and negative parts, the orthonormality ré<nctignal theory which require only reciprocal space infor-
lation Eq. (51), and hence the discretized form of the 3400 about the density: The absolute positivity of density
Ornstein-Zernike equatio(58), can still be recovered. Fur-  ¢4n0t e ensured if all of the Fourier components of density

thermore, the external potential is still Taylor expandedy o regarded as independent variational parameters.
about each lattice site, but in a piecewise manner: Taylor

series coefficients in each octant are treated as independent

variables. Differentiating the grand potential with respect to VIIl. ANALOG OF THE HYPERNETTED-CHAIN
one of these coefficients produces a correspondence between EQUATION

parameters of external potential and parameters of a density
operator analogous to EG16), except that only the split part
of a vector appears:

In this section we apply the analog of the Percus identity
derived in the preceding section to obtain an algebraic clo-
sure relationship analogous to the hypernetted-chain equa-
sV(R) PR ey tion. Since any parameter of effective potential introduced in
Ve Ty the Percus identity is thermodynamically conjugate to the
L - corresponding parameter of density, we can write that pa-
:pa%esei(l)r('l);F"'r('l)vi’ (80 rameter as a functional derivative, provided that the func-
j tional derivative is evaluated in the system with one patrticle

) , o .integrated out. If we subtract off the corresponding quantity
where the choice of plus or minus for each Cartesian index i, an unperturbed system, we obtain

identical on both sides of the correspondence. The functional
derivatives of parameters of external potential and density

: : . ~ oF IF
with respect to the actual external potential and density are AR alpr) =5 — 1, (83
similarly analogous to Eq$49) and (50), i.e., P dp(R)a o(R )y dp(Ri)a |,
DRY) + . heeed s+
54! (Ri)”"‘”’ = Iz Oy S(r—Ry), where the effective potential is the external potential that
S¢™D(r) S (81)  Must be added to the effective Hamiltonian obtained by in-
tegrating outp(R)), in order to obtain the original Hamil-
52¢(1)(fi)ﬁt---yr . tonian. At this stage, the particle number has changed from
SoM(ryspV(r')y N to N—1 and therefore when we integrate out the corre-
sponding degrees of freedom it is important that we work
and with a parametrization of density sufficiently flexible to al-

low changes in cell occupancy. We will, however, derive a

Op(Ri) p=.. —(I—-R o (I—R) -O(r—R general equation which can then be approximated by restrict-
sp(r) = (=R, (r=Ri),=0(r=Ry), ing the set of parameters considered. Splitting into ideal and
(82 excess components of free energy as before, we obtain
52p(ri)Mi...Vt —0
spV(ryspP(ry R _ 9Fg _ 9Fig
o o SR =55R Y | - Tap(RI
except that now we must identify,+ and d,- with right- PR}y 0
hand and left-hand derivative operat¢ds]. Thus, for ex- 2F.
ample, [f(x)d,+ 8(x)dx=—f'(e), where e is arbitrarily —
small but positive. The orthonormality relationship analo- Rice IP(R)adp(Re |

gous to Eq.(51) is proven as before, except that now it is _
split into six components, and the number of occurrences of X[p(Rk)c|P(Rj)b P(ROClol, (84
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where the¢ is assumed to include not only the correctionsetrized by their values at all points then the thermody-
from integrating out one patrticle, but also the corrections dusmamic potentials depend upon a continuous infinity of pa-
to the analog of the bridge functidr2] [the higher order rameters. By making strong but entirely physical
terms in the expansion @tFex/dp(R;),]: thus assumptions about the form of the equilibrium one-particle
density, namely, that it is sharply peaked about the sites of a
Bravais lattice, we can parametrize the external potential and
one-particle density in terms of a number of parameters to be
associated with each site. In this view, the thermodynamic

0F ox
dp(Ri)a

OF ex
p(Rj)b aP(RJa

0

2 0 Foy potentials then depend upon a discrete infinity of parameters.

= FWT-SYW IR Since classical density-functional theory has had consider-
Ip(R;)adp(R

Rce IP(R)adP(Ri)e 0 able success with single-parameter Gaussians as a trial den-

X[P(Rk)clp(RJ)b_p(Rk)c|0]+b(Ri R))ab- sity, we likewise simplify the parametrization further by re-

moving from the parametrization of density all moments
(850  higher than second, and truncating the Taylor expansion of

] . . . external potential after the linear term, leaving just four pa-
We will denote the first two terms on the right-hand side of ameters per lattice site.

Eq. (84 by AF4(Ri;Rj)ap. The density difference can be e now focus on the scalar parameter at each site. The
expressed as value of the external potential at a lattice sit€’(R,) is
p@(RR)) conju_gate to the nqrmalization pargmepé’?(Ri)z{ﬁ(i» of
(Rl —p(RY)¢| P kb (Ry) density. However, in most real solids the density of vacan-
PIRKclpR), ™ PRk clo R. PRk : . S :
! PR cies and interstitials is very smdlkven up to melting for
(86) example, experimentally of the order of 10in noble gas
solids [16], with density-functional calculations yielding

so that similar results[17]. Furthermore, models such as the har-
~ monic crystal that ignore vacancies and interstitials have had
BA(R)al p(ry), = BAFia(Ri iR ap+ 2 c¢?(Ri,Ry)ac considerable success in describing solids. Thus, as a first
Ric.e approximation, we take the normalization of density at each
p(z)(Rkij)cb_P(Rk)cP(Rj)b site to ben(i)=1 for all R;. The value of the external po-
p(R))p . tential is thus irrelevant. As can be seen in E43), the

Helmholtz free energy of a single-occupancy harmonic
(87 model depends upon the value of the external potential only
through an overall constant that is also physically irrelevant.
i particular, the one-particle density is not affected by varia-
tions in the value of the external potential at the lattice site.
This invariance further implies that the Gaussians that de-

The second term on the left-hand side can be transformed v
the analog of the Ornstein-Zernike equati@®) to yield

BAF (R ;R ab— — 5 > (R ac scribe the two-particle density are also normalized to a joint
P(Rjp “c occupancy of unityf{n(i)n(j))=1], because
X[p(Ri\Rj)eb=p(Ri)cp(R))b] 1 20 ORI~ MR =0

-— =(n@i)n(j))—(n(i){n(j)y=0.
- 1 z CD(R R )p(R) 32 (9¢(1)(Ri)’9¢(1>(Rj) J J
P(Rj)b = iRjlacP\Rj)ceb (90
:ﬂg(Ri)a|p(R-)b- (88)  Furthermore, mixed second derivatives of the %rand potential
J

in which one derivative is taken with respectdd
This equation, for the lattice case, is the equation analogouganish in this approximation because
to the hypernetted-chain relati$g]

(R;) also

1 9*BQ
Ing(ry,rp)=—B¢@(r1—rp)+ h(rl1r2)_c(2)(rlvr2)(89) - B2 3eI(R)ISI(R)),
familiar for fluids. It is another primary result for the crystal. =(N(i)p(R;}) ) —(N(i)){p(R;),)=0. (91
IX. RELATION TO HARMONIC MODEL This relationship implies that even if we relax the single-

particle occupancy restriction, the occupancy-occupancy cor-
We will now simplify the sitewise analogs of the relation part of the Ornstein-Zernike equation will approxi-
Ornstein-Zernikd Eq. (70)] and hypernetted-chain equations mately decouple from the terms involving displacement. The
[Eqg. (88)] presented in the preceding sections as much asccupancy-occupancy term can then be treated as a lattice
possible, and specialize them to the parametrization in termgas, for which analogs of the Ornstein-Zernike equation and
of positive and negative parts of Cartesian coordinates. Weensity-functional theory have already been developed
have already seen that in the functional approach to inhomd48,19. We note that the first direct correlation function
geneous fluids, the thermodynamic potentials are functionals(r) has also been described in crystals with vacancies and
of #V(r) and p'¥(r); if ¥ and p'¥ are regarded as param- interstitials [20]. We now reconsider the Ornstein-Zernike
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equation in the form of the hierarchy inverse relationship Eqwhere we are using brackets and parentheses to symmetrize
(58), except that we now label the parameters separately withnd antisymmetrize subscripted expressions, for example,
the + and — separation introduced above. For notationalr;,=r ,++r,- andr,=r,+—r,-. We will refer to these
convenience, introduce an operatbt that turns any com- rearrangements as cusplike and continuous, respectively.
ponent of a second rank tens@nclude second partial de- Now, we separate the second derivativefointo noninter-
rivatives into a 2<2 matrix of split components, such as  acting and excess parts as in E0). In order to evaluate the
ideal gas free energy, we must make assumptions about the
higher moments of the density profile at each site—R;),

P f,u*v* f;ﬁv’
MIfl={ 5 ©2) defined implicitly by
We can therefore write the matrix form of the Ornstein-
Zernike equation(58) as P(f)zg o(r—Ry). (100
5iib,, 0 - PPF
( "o ):E E M ﬁ} Next, assume that the density profile is factorable into
0 0ij0un] R X Ip(Ri) nIp(Rj)y Cartesian coordinates(r)=o¢(r,)os(r,)o(r,). Since the

X M

220, density profiles about a site are Gaussian for a wide variety

T T } of potentials, and, further in crystals of sufficiently high sym-
I (RNIH (R, metry (including cubig, one-parameterGaussian, this as-
(93)  sumption about factorization is not a limitation. The non-

interacting free energy associated with that dite the

Note that for any variable that has been split into positiveapproximation that overlap integrals of the form
and negative partsx=x"—x" and|x|=x"+x". Further-  [d* o(r)o(r—R,) can be ignored foR,#0] can be written
more, for any two variables andy that have been separated in the form

this way,
1 p(R p(R
1 |X||y| _|X|y o X+y+ X+y— - B]:id:C]_N_ - E (In <|p( I)X|> +|n <|P( I)y|>
Z =B~ 1| _ . _|-B, (94 2 ® A A
2\ =xly] xy Xyt X7y RO
where +In M (101
- 1/1 -1 . . .
B:_( ) (95) parametrized by the mean absolute displacements in each
v2i1 1 Cartesian coordinate, whef@, is a constant that depends

upon the form of the density profile, and not on its width.

provides a similarity transformation between the two basesgjnce the free energy of the noninteracting system depends
Note_also that the transpose is equivalent to the inversgjnon  density parameters only through the width

B'=B"". Thus an off-diagonal term in w=(|p(R,),[> and not through the particle’s mean position
20, (;B(Ri)M) (which is zero, by definition It follows that the
B-1Mt }g (96) second derivative of the ideal gas free energy appears only in
I P (RIS P(R)), the cusplike equation. Thus the noninteracting contribution
o simplifies to
is given by
AR RBR)Y —(ARODBR)NT - (97) Pra oo™ (102

and it vanishes in harmonic approximation when we neglect

overlap of the density profiles at each site because the twand the separate cusplike and continuous Ornstein-Zernike
point density is Gaussiafmot because of symmetry consid- equations become

erationg. Accordingly, we will neglect the off-diagonal

terms of Eq.(96) here. We can then act on E@3) on the

left with B~* and on the right with Bo obtain two separate  8;8,,=> > [€?(Ri,R)[uyn+ Or, R (R
equations R

BAF Xp(RIA(R), [y —w?], (103
_5”5’”:% ; Ip(Ri)[19p(Ri) [{p(RllP(R).D 2 . .
~([BRN(BRDNI, (99) %18w= g0 2 SRR LPROP (R
; (104)
BI . .
_6”5’”:% 2 ap(R) (P (R) ) [{p(RxP(R)) These equations, together with sitewise analog of the

hypernetted-chain equation, completely determine the coef-
—(p(RO\(P(R) )], (99  ficients of left and right derivatives of functions in the



5002 J. S. McCARLEY AND N. W. ASHCROFT 55

two-point density. But because of the similarity transforma- -,

tion, Eq.(94), the left and right derivatives combine in forms e Pt :j du(0)u(0), (110
that either form thétwo-sided derivative of aés function in

the continuous equation, or extract the change of derivative

that occurs at a cusp, in the cusplike equation. When a ther- . @ ] ]
modynamic function is calculated by integrating over the X ex _EB;. ¢ (Ri_Rj+U(')_U(J))>
two-point density, the other functions in the integrand almost .

always have continuous derivatives. Because of this, the co-

efficients of the two-point density determined by the cusplike .

equation are rarely of interest. And since the second of these ~e AN f d®u(0)u(0),

equations is a matrix inverse, it is clear that the continuous

guadratic parts of the direct correlation function play a role ) 2

analogous to the dynamic matrix of the harmonic model. xXex ,8;0 u(i) w " (Ry) 4,u(0),
We can apply the same transformation to the sitewise

hypernetted-chain Eq88) which we now write in a more 2)

symmetrical form, xXex _:3;0 u(0) .4 (Ri) .,u(0),

~e B’z

<u<0>z+>+,8§o u(iy),¢?

BM[AF(R R)ul— 2 MF(R)IFV(R),

X (Ry) ,{U(0)2.)+ -+

xﬁ[hmi,Rj)M]—g R RGIN: G

=B/\7l[?43(Ri)#|p<R) 1. (105 whereZ is a constant of normalization independent of the
ﬁﬁ(l)(R])kﬁ(j))\v=ﬁ{/\ﬁ[}3(Ri)M|p(Rj)V] (105 displacements, there is no summation over subseriptthe

final line, and the replacement of the integration variables by
their mean values is the mean-field approximation. The
primed Hamiltonian contains dynamical variables of all par-

PP(D(RAR())Nv=BM[(Ri) |p(Ry)v], (105

where ticles excepu(0): i.e.,
C(i.J)n=M[c?(R; R)),n]. (108 7%'=%#j2¢0 $PRi-Ri+u() ~u()+ 3 67(R)
- - R)rey + 2 (i), 6@ (R),+3 2 u(i) dP(R),,u(), .
R(j)y,=M (l)(pR(_)J)}(\i(R_) , (107 i#0 M Iz 2i¢0 H M
P i\pP ilv (111
and We take the logarithm of the final line of E(L10) to obtain
(2) Ri,R)y,— p V(R O(R. , ~Loa 1 1 )
h(Ri,Rj)M:p ( p(Jl)))(\R-)fpu()(F\’)-);p Ry : H =H’—Eln Z—[—Bln(u(O)Z+>+iZO u(i),¢?
o (108 ,
X(R;) w+ (112
( I ,u2<u(0)z+> .
R, = | P O 109
p 7 (R)),= 0 (R, (109

Thus we obtain the effective external potential as

In order to make use of this result, we must estimate the _ (u(0)2,)
effective potential on the right-hand side, in terms of the (R W) - =P (R) i o (113
effective Hamiltonian that appears in the Percus identity for oz (u(0)z+)
moments. We carry out this estimate in a mean-field approxi-

mation by taking a Hamiltonian composed entirely of pairgng the continuous, quadratic parts of the direct correlation
potentials, as Eq.1), without the external potential, and es- fnction are given by the second derivatives pair potential
timating the pair potential obtained whaf0), (whose equi-

librium position R, is taken to be the originis integrated
out, for positive values; thus c@(Ri\R) (wyn=—Bd? (R ,R)) .. (114



55 CORRELATION FUNCTIONS IN CLASSICAL SOLIDS 5003

We arrive at our objective: The continuous, quadratic part ofolid. There are of course several possible sources of anhar-
the direct correlation function in a solid of pairwise interact- monicity and these will enter into more extended descrip-
ing atoms now seems to be the dynamical matrix of theions. First, a more extensive parametrization of the density
harmonic model of that solid. operator, for example, including higher moments of displace-
ment, or explicitly including occupancy, will include the
consequences of nonquadratic parts of the interparticle po-
. ] o tential. Second, knowledge of higher moments of displace-
We have established conjugate parametrizations of thgent that would be included in this more extensive calcula-
two-point density and direct correlation function of the clas-tion would enable an assessment of how much the density
sical solid. The parameters satisfy a matrix equation analoprofile about each site deviates from a perfect Gaussian, and
gous to the Ornstein-Zernike equation, as well as an alggyould therefore allow for inclusion of coupling between
braic closure relation. Together these equations determir@ensity operators of differing tensor rank, and between the
displacement-displacement correlation functions in a solidggntinuous and cusplike moments of density. Finally, the
and form a phonon-free theory of simple classical solidseffective external potential used in the Percus identity can be

Such a theory will be useful in describing solids under cir-cgjculated using approximations more sophisticated than Eq.
cumstances where phonon-based approaches break dowfyg).

such as at surfaces and other interfaces, or in melting. We
have simplified an approximation to the closure relation that
is analogous to the hypernetted-chain relation of inhomoge-
neous fluids. From these results it is clear that the sitewise
analog of the hypernetted-chain equation, when evaluated in This work was supported by the National Science Foun-
terms of a basis of density operators corresponding to padation under Award No. DMR-9121654 and under U.S.
ticle displacements, reduces to the harmonic model for th®ept. of Education Grant No. P200A10148-93.

X. CONCLUSION
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